Очистка от углекислого газа и серосоединений

对不起,此内容只适用于俄文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы-диоксид углерода (СОа) и сероводород (H2S), а также сероорганические соединения -серооксид углерода (COS), сероуглерод (CS2), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы.
При выборе способов очистки газов необходимо внимательно подходить к оценке химического состава сырья, включая примеси, которые не регламентируются в товарном газе и продуктах его переработки или не оказывают влияния на их качество из-за незначительного содержания в исходном газе. Это обусловлено в частности тем, что при взаимодействии примесей с некоторыми растворителями могут образоваться такие химические соединения, которые при нагревании их в процессе регенерации не распадаются на составные части (реакция между ними необратима в условиях процесса), в результате чего концентрация активной части растворителя постепенно уменьшается (возрастает содержание балласта в системе), растворитель дезактивируется и приходит в негодность.
Практика показывает, что наличие незначительного на первый взгляд содержания примесей может оказать принципиальное влияние на выбор растворителя или процесса очистки газа. Важное значение при рассмотрении этого вопроса имеет соотношение H2S : С02 в исходном газе – концентрация сероводорода в кислых газах может оказаться определяющей при выборе процессов и технологии очистки исходного сырья и способов утилизации «нежелательных» компонентов. Это отношение может быть настолько низким, что для переработки кислых газов в элементарную серу использовать наиболее распространенный метод термокаталитического окисления сероводорода (процесс Клауса) будет невыгодно.

Для очистки природных и нефтяных газов от сероводорода, СО2 и других серо- и кислородсодержащих «нежелательных» соединений используют в основном абсорбционные процессы, которые в зависимости от особенностей взаимодействия этих соединений с растворителями – абсорбентами можно условно объединить в следующие группы.
Хемосорбционные процессы очистки газа растворителями, представляющими собой водные растворы алканоламинов: моно- этаноламина (МЭА), диэтаноламина (ДЭА), дигликольамина (ДГА) и др. Они основаны на химической реакции «нежелательных» соединений с алканоламинами, являющимися активной, реакционной частью абсорбента. К этой же группе относят процессы поташной очистки.
Аминовые процессы обеспечивают тонкую очистку газов от сероводорода и С02 при различных рабочем давлении и концентрации их в исходном сырье; растворимость углеводородов в этих абсорбентах невелика. Технологическое и аппаратурное оформление процессов отличаются простотой и надежностью.
Основные недостатки процессов: не достигается комплексная очистка газов от H2S, С02, RSH, COS и CS2; низкая глубина извлечения меркаптанов и некоторых других сероорганических соединений; при взаимодействии меркаптанов, COS и CS2 с некоторыми растворителями образуются нерегенерируемые в условиях процесса химические соединения; для реализации процессов необходимы высокая кратность циркуляции абсорбента и большие теплоэнергетические затраты (с повышением концентрации «нежелательных» соединений они увеличиваются); абсорбенты и продукты взаимодействия их с примесями, содержащимися в сыром газе, нередко обладают повышенной коррозионной активностью.

С увеличением концентрации активного вещества и степени насыщения растворителя сероводородом и другими «нежелательными» соединениями возрастает коррозионная активность алканолами- новых абсорбентов. Поэтому поглотительная их способность часто лимитируется не условиями термодинамического равновесия, а предельно допустимой степенью насыщения абсорбентов’кислыми газами.
Процессы очистки газов методом физической абсорбции «нежелательных» соединений органическими растворителями: пропиленкарбонатом, диметиловым эфиром полиэтиленгликоля (ДМЭПЭГ), N-метилпирролидоном и др. Они основаны на физической абсорбции, а не на химической реакции, как хемосорбционные процессы.
Процессы физической абсорбции могут оказаться более экономичными также и потому, что органические растворители обеспечивают селективное извлечение сероводорода в присутствии С02 и позволяют получить хорошее сырье для производства серы при неблагоприятном соотношении H2S : С02 в исходном сырье газа и для производства товарного диоксида углерода. Эти процессы имеют при определенных условиях ряд преимуществ, которые могут быть выявлены только на основе технико-экономического анализа условий добычи, очистки и переработки газа и сопутствующих продуктов.

Рассматривая технологические особенности процессов очистки газов, необходимо отметить, что выбор способа очистки сводится, как правило, к выбору абсорбента, который при соответствующем конструктивном и технологическом оформлении процесса обеспечивает производство товарного газа и сопутствующих продуктов (серы и др.) при высоких технико-экономических показателях. Ниже перечислены процессы очистки газов от сероводорода, С02, RSH и других «нежелательных» соединений, основанных на химической и физической абсорбциях Основными критериями при выборе абсорбентов, а следовательно, и процессов являются начальное и конечное содержание извлекаемых «нежелательных» компонентов в газе и заданное рабочее давление в системе или начальное и конечное парциальное давление их в условиях очистки. Начальное давление предопределяет кратность циркуляции абсорбента (удельный его расход). Конечное парциальное давление (или глубина очистки газа) зависит в первую очередь от степени регенерации абсорбента и от равновесного давления извлекаемого газа над раствором от температуры. Капитальные и эксплуатационные затраты определяются главным образом кратностью циркуляции и условиями регенерации растворителя. Следовательно, экономика процесса предопределяется в основном парциальными давлениями извлекаемых «нежелательных» компонентов в сыром и очищенном газе. На основе этих данных можно оценить, какой из растворителей – химический или физический – наиболее приемлем для заданных условий. После этого, учитывая специфику содержащихся в газе примесей и возможные варианты взаимодействия их с растворителями данной конкретной группы, можно выбрать процесс, который целесообразно будет использовать для проведения технико-экономического исследования.